Chess Al Player Task 15: Create the Random Chess Player

Abstract: The goal of this task was to create the random player. This player creates a list of all of
the possible moves and randomly selects one of them. The random player is capable of playing
against a human or another random player.

Demo:

WP WP

WO WK

WP WP

WO WK

B PLAYER WINS
GAME OVER
MIL

(defun random-move (move-pairs curr-square dest
square selected)

(setf selected (nth (random (length move-pairs))
move-pairs))

(setf curr-square (car selected))

(setf dest-square (car (cdr selected)))

(move curr-square dest-square)

)

(defmethod get-move-pair-list ((piece piece)
curr-square poss-dests)

(setf curr-square (cs piece))

(setf poss-dests (possible-moves piece))

(mapcar (lambda (dest) (list curr-square dest))
poss-dests)

)

(defun play-turn--rr ()
(if (game-overp)
(progn
(format t "GAME OVER")
nil

)
(progn
(random-white-move)
(if (game-overp)
(progn
(format t "GAME OVER")
nil

(progn
(random-black-move)
(play-turn--rr)

(defun play-turn--hr (color curr-square csr csf
dest-square dsr dsf)
(if (game-overp)
(progn
(format t "GAME OVER")
nil

)
(progn
(format t "It is the ~A player's turn~%" color
(format t "Enter start square: ")
(setf curr-square (parse-square (string-trim
(read-1line))))
(setf csr (car curr-square))
(setf csf (car (cdr curr-square)))
(format t "Enter end square: ")
(setf dest-square (parse-square (string-trim
(read-1ine))))
setf dsr (car dest-square))
setf dsf (car (cdr dest-square)))
setf curr-square (aref (board *gameboard*)

setf dest-square (aref (board *gameboard*)

move curr-square dest-square)

(random-black-move)
(play-turn--hr 'w)
)

defun play-game--hr ()
(play-turn--hr 'w)

defun play-game--rr ()
(play-turn--rr)

defun random-black-piece ()

(nth (random (length *black-pieces*)) *black-pieces*

defun random-black-move ()
(random-move (get-all-color-moves 'b))

defun random-white-move ()
(random-move (get-all-color-moves 'w))

defun pieces-of-color (color)

(cond
((eq color 'w) *white-pieces*)
((eq color 'b) *black-pieces*)

)
)

(defun oppo-pieces-of-color (color)
(cond
((eq color 'b) *white-pieces*)
((eq color 'w) *black-pieces*)
)
)

(defun get-oppo-color-moves (color)
(cond
((eq color 'w) (get-all-color-moves 'b))
((eq color 'b) (get-all-color-moves 'w))

)
)

(defun oppo-color (color)
(cond
((eq color 'w) 'b)
((eq color 'b) 'w)

