Title: Creating Different Types of Chess Players

Author: Kieran Finnegan

Abstract:

The primary objective of this project was twofold. Firstly, the aim was to implement the board
game of chess in Lisp, effectively simulating the rules and mechanics of the traditional game.
Secondly, and most importantly, the project focused on creating three different chess players with

different approaches to gameplay.

The first player would adopt a strategy of making random moves, restricted only by the legality
of each move given the current board state. This player essentially disregards any strategic

consideration and relies solely on chance to determine its moves.

The second player, on the other hand, employs a scoring system based on Alan Turing's
Turochamp to make informed decisions. By evaluating all possible moves and their respective
scores, this player is able to make moves that maximize its potential advantage over its opponent.
This approach offers a more strategic and calculated method of playing chess compared to the

random move player.

The third player used a scoring system based on scores given to each square on a board for each
piece. By evaluating all possible moves and their respective scores, this player is able to make

moves that maximize the score of all the squares.

Sections:

Introduction:

Chess, a game with a history spanning since the 6th century, has long been considered a symbol
of human intelligence and strategic prowess. The intricate interplay of pieces on the 8x8 board
has captivated and challenged minds throughout the centuries, leading to the development of
increasingly sophisticated chess strategies and theories (“History of Chess” - Andrew E. Soltis -
2021). As artificial intelligence has progressed, researchers have wanted to create machines that
can rival or even surpass human performance. This paper presents an approach, development and

the results of basic chess-players that were created throughout this project.

Initially, this project embarked on an ambitious journey, with the primary objective of developing
a chess player utilizing the minimax algorithm and alpha-beta pruning to compete against human
opponents. As the project progressed, however, it became evident that accomplishing these lofty
goals within the given timeframe would be unattainable. Consequently, the project's focus shifted
towards creating distinct chess players, each employing different decision-making strategies

based on various aspects of the game.

Ultimately, a total of three distinct players were developed: a random player, a material player,
and a location player. Each of these players demonstrated unique approaches to their
decision-making processes, offering valuable insights into the effectiveness of different chess

strategies and their potential for success in the game.

Background

Chess is a classic two-player strategy board game played on a square 8x8 grid, known as a
chessboard, with 64 alternating light and dark squares. Each player begins the game with 16
pieces: one king, one queen, two rooks, two knights, two bishops, and eight pawns. The

objective of the game is to capture the opponent's king.

Each of the pieces in chess have their own unique movement patterns that have been

implemented, which are as follows:

1. King: The king can move one square in any direction: horizontally, vertically, or diagonally.

2. Queen: The queen is the most powerful piece on the board. It can move any number of squares

horizontally, vertically, or diagonally, as long as its path is unobstructed.

3. Rook: The rook can move any number of squares horizontally or vertically in a straight line,

as long as its path is unobstructed.

4. Bishop: The bishop moves any number of squares diagonally in a straight line, as long as its
path is unobstructed. Since each player starts with two bishops, one on a light square and one on

a dark square, the bishops can only ever move on their respective square colors.

5. Knight: The knight has a unique L-shaped movement pattern, moving two squares in a straight
line, horizontally or vertically, followed by one square perpendicular to the initial direction, or

vice versa. The knight is the only piece that can "jump" over other pieces on the board.

6. Pawn: The pawn moves forward one square vertically, but it captures diagonally, one square
forward and to the left or right. On a pawn's first move, it has the option to move forward one or

two squares vertically.

There are some special moves that certain pieces can make that have not been implemented, for

example castling. (“How to Play Chess: 7 Rules to Get you Started” -CHESScom- 2022)

To enable the different players to make their decisions, I developed separate scoring systems for
both the material player and the location player. These scoring systems helped evaluate and

prioritize potential moves based on their respective strategies.

For the material player, I assigned a specific value to each unique chess piece, representing its
relative "worth" in the game. I utilized the scoring system from Alan Turing's Turochamp, which

assigns the following values (“Turochamp” -ChessProgrammingWiki- 2020):

Pawn =1
Knight =3
Bishop =3.5
Rook =5
Queen =10

By each piece its own score, the material player can make informed decisions by assessing the

potential material gain or loss resulting from a move.

On the other hand, the scoring system for the location player focuses on evaluating the positional
strength of each square on the board for every piece type(‘“Piece-Square tables” -
ChessProgrammingWiki-2019). Each unique chess piece has a set of assigned values for every
square, reflecting the strategic advantage of occupying that particular square. For example the

following is the table for white rook:

(setf *wrook-table*
(make-array '(8 8) :initial-contents
'((© © 6 0 © 0 © 0)
(.51 1 1 1 1 1 0.5)

1
O 0O OO0
© U1 U1 U1 U1 Ul
O 0O 0O OO0
O 0O OO
O 0O 0O 0O
O 0O 0O OO0

(%]
(%]
(%]
(%]
(%]
5

N AN NN AN

(W)

By employing these distinct scoring systems, the material and location players can effectively
analyze the board's current state, weigh the benefits and drawbacks of potential moves, and select

the optimal move according to their strategic approach.

Program Description

The program was developed using Common Lisp and the Common Lisp Object System for

creating game objects and storing essential information.

One of the primary objectives of the program was to establish the chessboard, the individual
pieces, and to integrate the game rules for each piece. Initially, I attempted to represent the board
using a one-dimensional (1D) array consisting of 64 elements (“Board Representations in
Computer Chess” - Likeawizard - 2022). Each element in the array would correspond to a
square on the chessboard and indicate whether it was occupied and by which piece. However, as
the project progressed, it became apparent that this approach was overly complicated and

hindered the implementation of other components.

To overcome this challenge, I decided to modify the board representation from a 1D array to a
two-dimensional (2D) array and created a square object in CLOS. This square object contained
vital information such as rank, file, occupation status, and a list of the adjacent squares. The
transition to a 2D array and the introduction of the square object streamlined the board
representation and made it more intuitive to work with, ultimately facilitating the implementation

of game mechanics and rules for each chess piece.

The next crucial component of the program involved implementing the movement rules for each
chess piece. To achieve this, I created two separate functions for every piece: a move function
and a legal-moves function (“Finding All Legal Chess Moves” - Christian Behle - 2021). These
functions worked together to evaluate a requested move and determine its legality based on the

piece's current square and the target square. Factors that could render a move illegal include

violation of a piece's movement rules or the presence of an obstructing piece on the path to the

target square.

After completing the move and legal-move functions for all pieces, I proceeded to incorporate
the endgame rules. In traditional chess, a game concludes when a player achieves a checkmate
against the opponent's king. However, after spending considerable time attempting to implement
this rule, I opted for a simplified approach, ending the game when a player captures the
opponent's king. To facilitate this, I developed a game-overp function that leverages
bking-in-playp and wking-in-playp to verify if a king was removed from play during the

previous turn.

With these foundational elements in place, I began designing an interface for two human players
to compete against each other. The interface prompts players to input the current square of the
piece they wish to move and the target square for the desired move. The program then employs

the move function to relocate the piece to the target square, provided it constitutes a legal move.

After all this was completed, I proceeded to develop the different chess-playing strategies that

constituted the primary focus of the project.

The first player implemented was the random player, which operates by generating a list of all
the pieces the player has in play and randomly selecting one of them. The program then utilizes
the get-all-possible-moves function to identify potential moves for the chosen piece. If the list of
possible moves is non-empty, the player randomly selects a move from the list and executes it.
Since there is no scoring function for this player, its decisions are uninfluenced by any strategic

considerations.

The second player developed was the material player, which employs the scoring system
outlined earlier to assess each potential move. The get-lowest-score function determines the
optimal move for this player by examining all possible moves for each piece on the board,

executing each move, and calculating the total score of the opponent's remaining pieces. The

function returns the move that results in the lowest score. In cases where multiple moves yield

the same lowest score, the player randomly selects a move from the list of equivalent options.

The final player implemented was the location player, which uses a distinct array for each piece
type, comprising ten different arrays: bpawn-table, wpawn-table, wbishop-table, bbishop-table,
wking-table, bking-table, knight-table, queen-table, brook-table, and wrook-table. Each array
contains a score for every square on the chessboard, reflecting the strategic value of that position

for the corresponding piece type.

The location player's decision-making process is similar to that of the material player. It
identifies all possible moves a player can make given the current board state, executes each
move, and calculates the total score of all the squares occupied by the player's pieces. The
program then returns the move or moves with the highest score, and the player randomly selects

one from the list.

Upon completing the development of the different players, I proceeded to create methods that
allowed a human to compete against the various players, as well as methods for the players to
face off against one another. Additionally, I implemented methods to facilitate multiple game
simulations and gather statistical data on the outcomes. These methods were used in testing the
performance of the individual players and obtaining the results required for evaluating the

success of the project.

Demos
This section is going to show the demo some of the functions that demonstrate the project best.

Move Demo

This Demo is showing the move function in action
It moves the white knight on A3 to capture the black
pawn on B5

Possible Moves Demo:

(possible-moves wrook2)
\E JUARE {10

This demo shows the possible moves method. The white rook
On h2 it has 3 possible squares that it can travel to.

Material Player Scoring Demo:

(moves-with-lowest-score ‘w)

N R W R R VY]

L WL LW

This demo show shows the scoring function for the
material player. It returns the move with the highest
score for the white player.

Material Player Move Demo;

The white knight on B4 take the black
king on D5

Random Player Moving Demo:

The black queen on C2 moves to B3
Instead of capturing the white king
on D2

Location Player Scoring Demo:

(highest-location-score *w)

QUARE {100538

The function returns a the move with the
highest score possible based on the location
of the players pieces

Results:

Upon the completion of the project, I conducted an extensive evaluation involving the

three distinct players, pitting them against each other in a series of 1000 simulated games.
Contrary to my initial expectations, the outcomes revealed a much closer competition than
anticipated. I had originally hypothesized that the material player would significantly outperform

the random and location players.

While the material player emerged victorious in a majority of the games against its counterparts,
the winning margins were notably slim. Against the random player, the material player secured
510 wins, accounting for 51% of the games. In matchups with the location player, the material

player won 528 games or 52.8% of the time. Interestingly, the location player outperformed the

random player, winning 547 games or 54.7% of the time. The narrow margins between the
material player and its opponents were indeed surprising, as I expected a more dominant

performance.

The most intriguing aspect of these results, however, was the location player's superior win rate
of 54.7% against the random player, surpassing the material player's success in the same
matchup. This finding suggests that the location player could be a more favorable choice when

competing against the random player.

In conclusion, the project's outcomes indicate that, overall, the material player has a higher
likelihood of defeating both location and random players. However, when facing the random

player, the location player emerges as a more advantageous choice.

(play-1r-games 1000)
Location Player wins: 547 times
Random Player wins: 453 times
NIL

(play-mr-games 1000)
Material Player wins: 510 times

Random Player wins: 490 times
NIL

(play-ml-games 1000)
Material Player wins: 528 times
) Loction Player wins: 472 times
MIL

The statistics of 1000 games

Reflections and Conclusions:

This project, although not aligned with the initial vision, proved to be a valuable learning

experience and a successful endeavor. Throughout the course of the project, I gained a deeper
understanding of chess and the intricacies of planning and executing a large-scale project. The
initial plan was ambitious, and the limited timeframe and experience presented challenges that

prompted a reassessment of the project's scope.

Upon realizing the need for adjustments, I revised the plan to align more closely with the
available resources while still adhering to the core objectives. As a result, the final project laid a
solid foundation that can be expanded and refined in the future, potentially evolving into a more

comprehensive and sophisticated program.

In conclusion, the project taught valuable lessons about project management, adaptation, and the
importance of setting realistic goals. The experience gained from this project can be applied to

future endeavors, paving the way for continued growth and improvement.

Bibliography:

1.

“Board Representations in Computer Chess” - Likeawizard - 2022
https://lichess.org/(@/likeawizard/blog/review-of-different-board-representations-in-com

uter-chess/S9eQCAWa

“How to Play Chess: 7 Rules to Get you Started” -CHESScom- (2022)
https://www.chess.com/learn-how-to-play-chess

“History of Chess” - Andrew E. Soltis - (2021)
https://www.britannica.com/topic/chess/History

“Finding All Legal Chess Moves” - Christian Behle - (2021)
https://levelup.gitconnected.com/finding-all-legal-chess-moves-2¢b872d05bc6

“The Orlgmal CHess Engine: Alan Turing’s Turochamp the real greco (2021)

“Turochamp” -ChessProgrammingWiki- 2020
https://www.chessprogramming.org/Turochamp#Evaluation_Features

“Piece-Square tables” - ChessProgrammingWiki-2019
https://www.chessprogramming.org/Piece-Square_Tables

https://lichess.org/@/likeawizard/blog/review-of-different-board-representations-in-computer-chess/S9eQCAWa
https://lichess.org/@/likeawizard/blog/review-of-different-board-representations-in-computer-chess/S9eQCAWa
https://www.chess.com/learn-how-to-play-chess
https://www.britannica.com/topic/chess/History
https://levelup.gitconnected.com/finding-all-legal-chess-moves-2cb872d05bc6
https://www.chess.com/blog/the_real_greco/the-original-chess-engine-alan-turings-turochamp
https://www.chess.com/blog/the_real_greco/the-original-chess-engine-alan-turings-turochamp
https://www.chessprogramming.org/Turochamp#Evaluation_Features
https://www.chessprogramming.org/Piece-Square_Tables

